Copied to
clipboard

G = C23⋊F5order 160 = 25·5

The semidirect product of C23 and F5 acting via F5/C5=C4

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C23⋊F5, D10.4D4, C52(C23⋊C4), C22⋊F52C2, (C22×C10)⋊3C4, (C2×Dic5)⋊2C4, C22.4(C2×F5), C10.9(C22⋊C4), C2.10(C22⋊F5), (C22×D5).15C22, (C2×C5⋊D4).7C2, (C2×C10).10(C2×C4), SmallGroup(160,86)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C23⋊F5
C1C5C10D10C22×D5C22⋊F5 — C23⋊F5
C5C10C2×C10 — C23⋊F5
C1C2C22C23

Generators and relations for C23⋊F5
 G = < a,b,c,d,e | a2=b2=c2=d5=e4=1, ab=ba, ac=ca, ad=da, eae-1=abc, ebe-1=bc=cb, bd=db, cd=dc, ce=ec, ede-1=d3 >

2C2
4C2
10C2
10C2
2C22
4C22
5C22
5C22
10C4
20C4
20C22
20C4
2D5
2C10
2D5
4C10
5C2×C4
5C23
10D4
10D4
10C2×C4
10C2×C4
2Dic5
2C2×C10
4F5
4D10
4F5
4C2×C10
5C2×D4
5C22⋊C4
5C22⋊C4
2C2×F5
2C2×F5
2C5⋊D4
2C5⋊D4
5C23⋊C4

Character table of C23⋊F5

 class 12A2B2C2D2E4A4B4C4D4E510A10B10C10D10E10F10G
 size 11241010202020202044444444
ρ11111111111111111111    trivial
ρ2111-111-1-111-11-1-1111-1-1    linear of order 2
ρ3111-1111-1-1-111-1-1111-1-1    linear of order 2
ρ4111111-11-1-1-111111111    linear of order 2
ρ51111-1-1i-1-ii-i11111111    linear of order 4
ρ61111-1-1-i-1i-ii11111111    linear of order 4
ρ7111-1-1-1-i1-iii1-1-1111-1-1    linear of order 4
ρ8111-1-1-1i1i-i-i1-1-1111-1-1    linear of order 4
ρ922-202-200000200-2-2200    orthogonal lifted from D4
ρ1022-20-2200000200-2-2200    orthogonal lifted from D4
ρ114-400000000040000-400    orthogonal lifted from C23⋊C4
ρ1244440000000-1-1-1-1-1-1-1-1    orthogonal lifted from F5
ρ13444-40000000-111-1-1-111    orthogonal lifted from C2×F5
ρ1444-400000000-1-5511-15-5    orthogonal lifted from C22⋊F5
ρ1544-400000000-15-511-1-55    orthogonal lifted from C22⋊F5
ρ164-4000000000-154+2ζ52+152+2ζ5+15-5154+2ζ53+153+2ζ5+1    complex faithful
ρ174-4000000000-154+2ζ53+154+2ζ52+1-55153+2ζ5+152+2ζ5+1    complex faithful
ρ184-4000000000-152+2ζ5+153+2ζ5+1-55154+2ζ52+154+2ζ53+1    complex faithful
ρ194-4000000000-153+2ζ5+154+2ζ53+15-5152+2ζ5+154+2ζ52+1    complex faithful

Smallest permutation representation of C23⋊F5
On 40 points
Generators in S40
(1 21)(2 22)(3 23)(4 24)(5 25)(6 26)(7 27)(8 28)(9 29)(10 30)(11 31)(12 32)(13 33)(14 34)(15 35)(16 36)(17 37)(18 38)(19 39)(20 40)
(1 11)(2 12)(3 13)(4 14)(5 15)(6 16)(7 17)(8 18)(9 19)(10 20)(21 31)(22 32)(23 33)(24 34)(25 35)(26 36)(27 37)(28 38)(29 39)(30 40)
(1 6)(2 7)(3 8)(4 9)(5 10)(11 16)(12 17)(13 18)(14 19)(15 20)(21 26)(22 27)(23 28)(24 29)(25 30)(31 36)(32 37)(33 38)(34 39)(35 40)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)
(2 3 5 4)(7 8 10 9)(11 16)(12 18 15 19)(13 20 14 17)(21 31 26 36)(22 33 30 39)(23 35 29 37)(24 32 28 40)(25 34 27 38)

G:=sub<Sym(40)| (1,21)(2,22)(3,23)(4,24)(5,25)(6,26)(7,27)(8,28)(9,29)(10,30)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,37)(18,38)(19,39)(20,40), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40), (1,6)(2,7)(3,8)(4,9)(5,10)(11,16)(12,17)(13,18)(14,19)(15,20)(21,26)(22,27)(23,28)(24,29)(25,30)(31,36)(32,37)(33,38)(34,39)(35,40), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40), (2,3,5,4)(7,8,10,9)(11,16)(12,18,15,19)(13,20,14,17)(21,31,26,36)(22,33,30,39)(23,35,29,37)(24,32,28,40)(25,34,27,38)>;

G:=Group( (1,21)(2,22)(3,23)(4,24)(5,25)(6,26)(7,27)(8,28)(9,29)(10,30)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,37)(18,38)(19,39)(20,40), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40), (1,6)(2,7)(3,8)(4,9)(5,10)(11,16)(12,17)(13,18)(14,19)(15,20)(21,26)(22,27)(23,28)(24,29)(25,30)(31,36)(32,37)(33,38)(34,39)(35,40), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40), (2,3,5,4)(7,8,10,9)(11,16)(12,18,15,19)(13,20,14,17)(21,31,26,36)(22,33,30,39)(23,35,29,37)(24,32,28,40)(25,34,27,38) );

G=PermutationGroup([[(1,21),(2,22),(3,23),(4,24),(5,25),(6,26),(7,27),(8,28),(9,29),(10,30),(11,31),(12,32),(13,33),(14,34),(15,35),(16,36),(17,37),(18,38),(19,39),(20,40)], [(1,11),(2,12),(3,13),(4,14),(5,15),(6,16),(7,17),(8,18),(9,19),(10,20),(21,31),(22,32),(23,33),(24,34),(25,35),(26,36),(27,37),(28,38),(29,39),(30,40)], [(1,6),(2,7),(3,8),(4,9),(5,10),(11,16),(12,17),(13,18),(14,19),(15,20),(21,26),(22,27),(23,28),(24,29),(25,30),(31,36),(32,37),(33,38),(34,39),(35,40)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40)], [(2,3,5,4),(7,8,10,9),(11,16),(12,18,15,19),(13,20,14,17),(21,31,26,36),(22,33,30,39),(23,35,29,37),(24,32,28,40),(25,34,27,38)]])

C23⋊F5 is a maximal subgroup of
C5⋊C2≀C4  C22⋊C4⋊F5  (C22×C4)⋊F5  C242F5  C23⋊F55C2  (C2×D4)⋊7F5  (C2×D4)⋊8F5  D10.D12  C3⋊(C23⋊F5)
C23⋊F5 is a maximal quotient of
(C22×C4).F5  (C22×C4)⋊F5  C22⋊F5⋊C4  D10.SD16  (C2×D4)⋊F5  (D4×C10).C4  D10.Q16  (C2×Q8)⋊F5  (Q8×C10).C4  C24.F5  C242F5  D10.D12  C3⋊(C23⋊F5)

Matrix representation of C23⋊F5 in GL4(𝔽41) generated by

5103219
22273213
2891419
2293136
,
22033
3819380
0381938
33022
,
40000
04000
00400
00040
,
40404040
1000
0100
0010
,
1000
0001
0100
40404040
G:=sub<GL(4,GF(41))| [5,22,28,22,10,27,9,9,32,32,14,31,19,13,19,36],[22,38,0,3,0,19,38,3,3,38,19,0,3,0,38,22],[40,0,0,0,0,40,0,0,0,0,40,0,0,0,0,40],[40,1,0,0,40,0,1,0,40,0,0,1,40,0,0,0],[1,0,0,40,0,0,1,40,0,0,0,40,0,1,0,40] >;

C23⋊F5 in GAP, Magma, Sage, TeX

C_2^3\rtimes F_5
% in TeX

G:=Group("C2^3:F5");
// GroupNames label

G:=SmallGroup(160,86);
// by ID

G=gap.SmallGroup(160,86);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-5,24,121,188,579,2309,1169]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^5=e^4=1,a*b=b*a,a*c=c*a,a*d=d*a,e*a*e^-1=a*b*c,e*b*e^-1=b*c=c*b,b*d=d*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^3>;
// generators/relations

Export

Subgroup lattice of C23⋊F5 in TeX
Character table of C23⋊F5 in TeX

׿
×
𝔽