metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C23⋊F5, D10.4D4, C5⋊2(C23⋊C4), C22⋊F5⋊2C2, (C22×C10)⋊3C4, (C2×Dic5)⋊2C4, C22.4(C2×F5), C10.9(C22⋊C4), C2.10(C22⋊F5), (C22×D5).15C22, (C2×C5⋊D4).7C2, (C2×C10).10(C2×C4), SmallGroup(160,86)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C23⋊F5
G = < a,b,c,d,e | a2=b2=c2=d5=e4=1, ab=ba, ac=ca, ad=da, eae-1=abc, ebe-1=bc=cb, bd=db, cd=dc, ce=ec, ede-1=d3 >
Character table of C23⋊F5
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 5 | 10A | 10B | 10C | 10D | 10E | 10F | 10G | |
size | 1 | 1 | 2 | 4 | 10 | 10 | 20 | 20 | 20 | 20 | 20 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | -1 | i | -1 | -i | i | -i | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 4 |
ρ6 | 1 | 1 | 1 | 1 | -1 | -1 | -i | -1 | i | -i | i | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 4 |
ρ7 | 1 | 1 | 1 | -1 | -1 | -1 | -i | 1 | -i | i | i | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | linear of order 4 |
ρ8 | 1 | 1 | 1 | -1 | -1 | -1 | i | 1 | i | -i | -i | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | linear of order 4 |
ρ9 | 2 | 2 | -2 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | -2 | -2 | 2 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | -2 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | -2 | -2 | 2 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | -4 | 0 | 0 | orthogonal lifted from C23⋊C4 |
ρ12 | 4 | 4 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from F5 |
ρ13 | 4 | 4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | orthogonal lifted from C2×F5 |
ρ14 | 4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -√5 | √5 | 1 | 1 | -1 | √5 | -√5 | orthogonal lifted from C22⋊F5 |
ρ15 | 4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | √5 | -√5 | 1 | 1 | -1 | -√5 | √5 | orthogonal lifted from C22⋊F5 |
ρ16 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 2ζ54+2ζ52+1 | 2ζ52+2ζ5+1 | √5 | -√5 | 1 | 2ζ54+2ζ53+1 | 2ζ53+2ζ5+1 | complex faithful |
ρ17 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 2ζ54+2ζ53+1 | 2ζ54+2ζ52+1 | -√5 | √5 | 1 | 2ζ53+2ζ5+1 | 2ζ52+2ζ5+1 | complex faithful |
ρ18 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 2ζ52+2ζ5+1 | 2ζ53+2ζ5+1 | -√5 | √5 | 1 | 2ζ54+2ζ52+1 | 2ζ54+2ζ53+1 | complex faithful |
ρ19 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 2ζ53+2ζ5+1 | 2ζ54+2ζ53+1 | √5 | -√5 | 1 | 2ζ52+2ζ5+1 | 2ζ54+2ζ52+1 | complex faithful |
(1 21)(2 22)(3 23)(4 24)(5 25)(6 26)(7 27)(8 28)(9 29)(10 30)(11 31)(12 32)(13 33)(14 34)(15 35)(16 36)(17 37)(18 38)(19 39)(20 40)
(1 11)(2 12)(3 13)(4 14)(5 15)(6 16)(7 17)(8 18)(9 19)(10 20)(21 31)(22 32)(23 33)(24 34)(25 35)(26 36)(27 37)(28 38)(29 39)(30 40)
(1 6)(2 7)(3 8)(4 9)(5 10)(11 16)(12 17)(13 18)(14 19)(15 20)(21 26)(22 27)(23 28)(24 29)(25 30)(31 36)(32 37)(33 38)(34 39)(35 40)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)
(2 3 5 4)(7 8 10 9)(11 16)(12 18 15 19)(13 20 14 17)(21 31 26 36)(22 33 30 39)(23 35 29 37)(24 32 28 40)(25 34 27 38)
G:=sub<Sym(40)| (1,21)(2,22)(3,23)(4,24)(5,25)(6,26)(7,27)(8,28)(9,29)(10,30)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,37)(18,38)(19,39)(20,40), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40), (1,6)(2,7)(3,8)(4,9)(5,10)(11,16)(12,17)(13,18)(14,19)(15,20)(21,26)(22,27)(23,28)(24,29)(25,30)(31,36)(32,37)(33,38)(34,39)(35,40), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40), (2,3,5,4)(7,8,10,9)(11,16)(12,18,15,19)(13,20,14,17)(21,31,26,36)(22,33,30,39)(23,35,29,37)(24,32,28,40)(25,34,27,38)>;
G:=Group( (1,21)(2,22)(3,23)(4,24)(5,25)(6,26)(7,27)(8,28)(9,29)(10,30)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,37)(18,38)(19,39)(20,40), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40), (1,6)(2,7)(3,8)(4,9)(5,10)(11,16)(12,17)(13,18)(14,19)(15,20)(21,26)(22,27)(23,28)(24,29)(25,30)(31,36)(32,37)(33,38)(34,39)(35,40), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40), (2,3,5,4)(7,8,10,9)(11,16)(12,18,15,19)(13,20,14,17)(21,31,26,36)(22,33,30,39)(23,35,29,37)(24,32,28,40)(25,34,27,38) );
G=PermutationGroup([[(1,21),(2,22),(3,23),(4,24),(5,25),(6,26),(7,27),(8,28),(9,29),(10,30),(11,31),(12,32),(13,33),(14,34),(15,35),(16,36),(17,37),(18,38),(19,39),(20,40)], [(1,11),(2,12),(3,13),(4,14),(5,15),(6,16),(7,17),(8,18),(9,19),(10,20),(21,31),(22,32),(23,33),(24,34),(25,35),(26,36),(27,37),(28,38),(29,39),(30,40)], [(1,6),(2,7),(3,8),(4,9),(5,10),(11,16),(12,17),(13,18),(14,19),(15,20),(21,26),(22,27),(23,28),(24,29),(25,30),(31,36),(32,37),(33,38),(34,39),(35,40)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40)], [(2,3,5,4),(7,8,10,9),(11,16),(12,18,15,19),(13,20,14,17),(21,31,26,36),(22,33,30,39),(23,35,29,37),(24,32,28,40),(25,34,27,38)]])
C23⋊F5 is a maximal subgroup of
C5⋊C2≀C4 C22⋊C4⋊F5 (C22×C4)⋊F5 C24⋊2F5 C23⋊F5⋊5C2 (C2×D4)⋊7F5 (C2×D4)⋊8F5 D10.D12 C3⋊(C23⋊F5)
C23⋊F5 is a maximal quotient of
(C22×C4).F5 (C22×C4)⋊F5 C22⋊F5⋊C4 D10.SD16 (C2×D4)⋊F5 (D4×C10).C4 D10.Q16 (C2×Q8)⋊F5 (Q8×C10).C4 C24.F5 C24⋊2F5 D10.D12 C3⋊(C23⋊F5)
Matrix representation of C23⋊F5 ►in GL4(𝔽41) generated by
5 | 10 | 32 | 19 |
22 | 27 | 32 | 13 |
28 | 9 | 14 | 19 |
22 | 9 | 31 | 36 |
22 | 0 | 3 | 3 |
38 | 19 | 38 | 0 |
0 | 38 | 19 | 38 |
3 | 3 | 0 | 22 |
40 | 0 | 0 | 0 |
0 | 40 | 0 | 0 |
0 | 0 | 40 | 0 |
0 | 0 | 0 | 40 |
40 | 40 | 40 | 40 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 |
40 | 40 | 40 | 40 |
G:=sub<GL(4,GF(41))| [5,22,28,22,10,27,9,9,32,32,14,31,19,13,19,36],[22,38,0,3,0,19,38,3,3,38,19,0,3,0,38,22],[40,0,0,0,0,40,0,0,0,0,40,0,0,0,0,40],[40,1,0,0,40,0,1,0,40,0,0,1,40,0,0,0],[1,0,0,40,0,0,1,40,0,0,0,40,0,1,0,40] >;
C23⋊F5 in GAP, Magma, Sage, TeX
C_2^3\rtimes F_5
% in TeX
G:=Group("C2^3:F5");
// GroupNames label
G:=SmallGroup(160,86);
// by ID
G=gap.SmallGroup(160,86);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-5,24,121,188,579,2309,1169]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^5=e^4=1,a*b=b*a,a*c=c*a,a*d=d*a,e*a*e^-1=a*b*c,e*b*e^-1=b*c=c*b,b*d=d*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^3>;
// generators/relations
Export
Subgroup lattice of C23⋊F5 in TeX
Character table of C23⋊F5 in TeX